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Abstract
We investigate in detail the effect of electron and light- and heavy-hole state
mixing on the transmission coefficients and current–voltage characteristics of
interband tunnelling broken-gap heterostructures in the presence of a quantizing
magnetic field perpendicular to the interfaces. Double-barrier and barrierless
resonant tunnelling structures made from InAs, AlSb, and GaSb are considered.
The multiband Burt envelope function theory and the cylindrical approximation
are used to obtain analytical solutions for bulk dispersions, and wavefunctions
in heterostructures are derived with the transfer matrix method. Taking into
account the mixing of the states of different Landau-level indices at the
interfaces due to the spin–orbit interaction, we have calculated the transmission
coefficients for the coherent tunnelling transitions between the states of various
Landau levels, as well as the corresponding tunnelling current components.
We have shown that the mixing with the heavy-hole states results in additional
peaks of the current density. The tunnelling processes in which the Landau-
level index is not conserved may contribute significantly to these additional
peaks.

1. Introduction

Since it was proposed [1,2] to investigate broken-gap heterostructures based on InAs, AlSb, and
GaSb, such material systems have been studied extensively. In these heterostructures the InAs
conduction band overlaps with the GaSb valence band, allowing interband transitions between
the InAs conduction band states and the GaSb valence band states. Using this characteristic
band alignment, new devices like interband tunnelling diodes and transistors [3–7], as well
as the infrared detectors and laser diodes [8–12], have been made. The interband tunnelling
exhibits a negative differential resistance with a high peak-to-valley current ratio larger than
20 at room temperature [3, 7], and a high peak current density [6] of about 105 A cm−2.
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The absorption coefficient of the infrared detectors made from InAs/GaSb multiple quantum
wells [8] has reached 6500 cm−1. Recently, a high-efficiency interband cascade laser with a
peak power of 4 W/facet was demonstrated [12].

In broken-gap heterostructures the coupling between electron, light-hole and heavy-hole
states has been studied in connection to the quasiparticle spectrum and optical transitions
in quantum wells and superlattices [13–15], cyclotron resonance and the quantum Hall
effect [16, 17], and the interband tunnelling transport in resonant tunnelling structures
(RTS) [18–20]. It was shown that the coupling between the InAs electron states and the GaSb
heavy-hole quasibound states in InAs/AlSb/GaSb/AlSb/InAs RTS enhances the interband
current considerably. This coupling significantly affects the interband resonant tunnelling
times [21] and therefore the charge accumulation in the quantum well. This adds a further
influence of the electron–hole coupling on the interband tunnelling current density [22].

Experiments on the interband magnetotunnelling in broken-gap RTS have shown unusual
current–voltage (I–V ) characteristics [23–26]. Additional peaks of the current density
appear [23–25] when the magnetic field is perpendicular to interfaces, resulting from the
interband tunnelling involving different Landau levels in the quantum well. When the
magnetic field is parallel to interfaces, the current peak position in the I–V curve shifts
with the field strength [26], allowing us to derive the subband dispersions. On the theory
side, it was found [27] that the in-plane magnetic field can enhance the coupling between
electron states and heavy-hole states, resulting in an increase of resonant tunnelling transport
through the heavy-hole quasibound states. However, for the case of magnetic field applied
perpendicular to interfaces, the role of electron–heavy-hole coupling in transport processes is
much less understood. The first theoretical result on transmission coefficients was reported
only recently [28]. In earlier studies on the I–V characteristics of InAs/AlSb/GaSb/AlSb/InAs
RTS under a perpendicular magnetic field [29,30], the heavy-hole states were neglected. This
missing coupling with the heavy-hole states will be included in the present work.

We will use the envelope function theory of Burt [31] and the model described by
Foreman [32] for zinc-blende structure materials. Both the intra- and inter-Landau-level
transmission coefficients, and the interband tunnelling current through the light- and heavy-hole
quasibound states in the well of a RTS will be calculated using the transfer matrix method.
Due to the mixing of states belonging to different Landau levels caused by the spin–orbit
interaction at interfaces, the inter-Landau-level processes can occur without scattering [30]. In
this paper we will show the appearance of new peaks in the tunnelling current density due to the
coupling of the electron and light-hole states to the heavy-hole states, and the inter-Landau-level
processes may contribute considerably to the intensities of these peaks. Our results will provide
a qualitative description of the measured I–V curves of the InAs/AlSb/GaSb/AlSb/InAs
RTS [24] and the barrierless InAs/GaSb/InAs [25] structure under high pulsed magnetic fields
up to 40 T.

2. Model description

We will study the InAs/AlSb/GaSb/AlSb/InAs double-barrier RTS and the barrierless
InAs/GaSb/InAs structure grown along the 〈100〉 direction, which we define as the z-axis.
The band diagrams are specified in figures 1(a) and (b). We start with the 8 × 8 k · p

Hamiltonian [32] in the absence of a magnetic field. In the presence of a magnetic field
with the associated vector potential A, the momentum operators k̂l = −i ∂/∂l with l = x, y,
and z should be replaced by the canonical momentum operators K̂l = −i ∂/∂l + |e|Al/(h̄c),
where e is the electron charge and c the speed of light. To solve the eigenvalue problem, we
will apply a unitary transformation [33] to the Hamiltonian such that at K = 0 the 8×8 matrix
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Figure 1. Conduction and valence band diagrams of the InAs/AlSb/GaSb/AlSb/InAs double-
barrier RTS (panel (a)), and InAs/GaSb/InAs barrierless structure (panel (b)).

is diagonalized. Because of the formation of Landau levels, the theoretical analysis is very
complicated. Since the split-off band lies far away from the energies of the tunnelling carriers,
we will ignore the split-off band without any qualitative effect on our results. This simplification
allows us to obtain analytical solutions for bulk dispersions, and then use them to calculate
the transmission coefficients. If we define K̂± = ∓i(K̂x ± iK̂y)/

√
2, the so-obtained 6 × 6

Hamiltonian ĤK , with the proper arrangement of canonical momentum operators and material
parameters, can be expressed as

ĤK =
(

Ĥ+− Ĥ−−
Ĥ++ Ĥ−+

)
, (1)

with

Ĥ±∓ =



Ĥcc

√
2iPK̂z/

√
3 PK̂±

−√
2iPK̂z/

√
3 Ev(z) + Ĝ± Ŝ±

PK̂∓ Ŝ
†
± Ev(z) + F̂±


 (2)

and

Ĥ±± =



0 PK̂±/
√

3 0

PK̂±/
√

3 T̂± R̂±
0 R̂± 0


 , (3)
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where

Ĝ± = h̄2

2m
[K̂+(γ2 − γ1)K̂− + K̂−(γ2 − γ1)K̂+ − K̂z(2γ2 + γ1)K̂z]

∓ 1
6 (K̂+(N+ − N−)K̂− − K̂−(N+ − N−)K̂+), (4)

F̂± = − h̄2

2m
[K̂+(γ2 + γ1)K̂− + K̂−(γ2 + γ1)K̂+ − K̂z(2γ2 − γ1)K̂z]

∓ 1
2 (K̂+(N+ − N−)K̂− − K̂−(N+ − N−)K̂+), (5)

Ŝ± = − i
√

2√
3

(K̂zN+K̂± + K̂±N−K̂z), (6)

T̂± = − i
√

2

3
(K̂z(N+ − N−)K̂± − K̂±(N+ − N−)K̂z), (7)

R̂± = − h̄2
√

3

2m
[K̂+γ2K̂+ + K̂−γ2K̂−] ∓ 1

2
√

3
(K̂−NK̂− − K̂+NK̂+). (8)

In the above equations,

Ĥcc = Ec(z) + K̂Ac(z)K̂, (9)

Ec(z) is the conduction band edge, Ev(z) is the valence band edge, Ac(z) represents the effect of
remote bands on the electron effective mass, m is the free-electron mass, and P is the interband
momentum matrix element, which is supposed to be a constant value for the entire structure.
N+, N−, and N = N+ + N− are expressed in terms of the modified Luttinger parameters γ1,
γ2, and γ3 as

N− = −(h̄2/2m)(γ1 − 2γ2 + 1),

N+ = −(h̄2/2m)(6γ3) − N−.
(10)

All Luttinger parameters are material dependent, so they are functions of z.
Now we will add to ĤK the Zeeman term ĤZ to arrive at the 6 × 6 Hamiltonian

Ĥ6 = ĤK + ĤZ. (11)

For a magnetic field B along the z-axis, the elements (ĤZ)ij of ĤZ are defined as µBg0〈ui |ŝ ·
B|uj 〉 = µBg0〈ui |ŝzB|uj 〉, where g0 = 2, µB is the Bohr magneton, ui is a basis function,
and ŝ is the spin operator. The set of basis functions corresponding to the Hamiltonian Ĥ6 is
given in the appendix. With respect to these basis functions, ĤZ has the form

ĤZ = µBB




1 0 0 0 0 0
0 1/3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1/3 0
0 0 0 0 0 −1




. (12)

Then the envelope functions ψn of the entire heterostructure with abrupt interfaces satisfy the
equations ∑

l

Ĥnlψl = Eψn, n = 1, 2, . . . , 6, (13)

with the eigenenergy E. The boundary conditions can be obtained by integrating equations (13)
across an interface [31, 32].
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3. Eigenvalue equations in heterostructures

We will use the cylindrical approximation, γ2 = γ3, as in [33]. To avoid unphysical spurious
solutions, Ac(z) in Hcc should be set to zero [32]. Because in the InAs conduction band the
g-factor is much larger than g0, the elements (HZ)11 and (HZ)44 in HZ can be neglected.
We choose the vector potential Ay = Bx and Ax = Az = 0. Consequently, we have
K̂x = −i ∂/∂x, K̂y = −i ∂/∂y + |e|Bx/h̄c, and K̂z = −i ∂/∂z.

With Ac(z) = 0, the conduction band envelope functions play a secondary role [32] and
can be expressed in terms of the valence band envelope functions as

ψ1 = (E − Ec)
−1(

√
2iP k̂zψ2/

√
3 + PK̂+ψ3 + PK̂−ψ5/

√
3), (14)

ψ4 = (E − Ec)
−1(

√
2iP k̂zψ5/

√
3 + PK̂−ψ6 + PK̂+ψ2/

√
3). (15)

Then the eigenvalue equations reduce to the form

H4F = EF , (16)

where

F = (ψ2ψ3ψ5ψ6)
T. (17)

The energy-dependent 4 × 4 Hamiltonian Ĥ4 is obtained from Ĥ6 by removing the rows and
columns corresponding to the conduction band, and replacing N , N+, γ1, and γ2 = γ3 with

N ′ = N + P 2(E − Ec)
−1, (18)

N ′
+ = N+ + P 2(E − Ec)

−1, (19)

γ ′
1 = γ1 − Ep(3(E − Ec))

−1, (20)

γ ′
2 = γ ′

3 = γ2 − Ep(6(E − Ec))
−1, (21)

where Ep = 2mP 2/h̄2.
The boundary conditions to be satisfied by the solutions of equation (16), and hence of

equations (13), are derived by integrating equation (16) across an interface [32]. They ensure
the continuity of the probability current density at an interface. Then, across interfaces both
vector functions F and ĤBF are continuous, where

ĤB =




GB SB+ T B− 0
CB− FB 0 0
T B+ 0 GB SB−

0 0 CB+ FB


 , (22)

with elements

GB = − h̄2

2m
(2γ ′

2 + γ ′
1)k̂z,

FB = h̄2

2m
(2γ ′

2 − γ ′
1)k̂z,

SB± = h̄2

m

√
6iγ ′

2K̂± +
i
√

2√
3

N−K̂±,

CB± = i
√

2√
3

N−K̂±,

T B± = 2i
√

2

(
h̄2

2m
γ ′

2 +
N−
3

)
K̂±.

(23)
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4. Analytical solutions for bulk dispersions

Since γ2 = γ3, the solutions of equations (13) for a bulk material can be expressed in terms of
a finite number of eigenstates of a free charged particle in a uniform magnetic field [33]. We
define

fν(x
′) = exp(−sx ′2/2)Hν(

√
sx ′), ν � 0;

fν(x
′) = 0, ν < 0,

(24)

whereHν(
√

sx ′) is the Hermite polynomial andx ′ = x−x0, withx0 = −ky/s and s = |e|B/h̄c.
For ν � 0, ν is just the Landau-level index and fν(x

′) is a harmonic oscillator function. Hence
the multicomponent envelope functions have the form

ψ(n) =




C1fn(x
′)

C2fn(x
′)

C3fn−1(x
′)

C4fn+1(x
′)

C5fn+1(x
′)

C6fn+2(x
′)




exp(ikyy + ikzz). (25)

It is important to notice that an eigenstate ψ(n) with the quantum number n contains many
components corresponding to different Landau levels with indices ν = n − 1, n, n + 1, and
n + 2. Using the envelope functions ψ2, ψ3, ψ5, and ψ6 to construct the F in (17), and then
substituting it into (16), we arrive at the equation for C = (C2C3C5C6)

T:

h̄2

2m
(B(2)k2

z + B(1)ikz + B(0))C = (E − Ev)C. (26)

The matrices B(2), B(1), and B(0) are

B(2) =




−(2γ ′
2 + γ ′

1) 0 0 0
0 2γ ′

2 − γ ′
1 0 0

0 0 −(2γ ′
2 + γ ′

1) 0
0 0 0 2γ ′

2 − γ ′
1


 , (27)

B(1) = 2
√

3γ ′
2

√
s




0 1 0 0
−2n 0 0 0

0 0 0 2(n + 2)

0 0 −1 0


 , (28)

B(0) = s




2(n + 1)γ− − 2
3 (2γn + 1) 0 0 −4

√
3(n + 1)(n + 2)γ ′

2

0 −2nγ+ − 2γn −4
√

3n(n + 1)γ ′
2 0

0 −√
3γ ′

2 2(n + 1)γ− + 2
3 (2γn + 1) 0

−√
3γ ′

2 0 0 −2(n + 2)γ+ + 2γn


 .

(29)

In the above equation, γ± = γ ′
2 ± γ ′

1 and γn = 2mN−/h̄2.
Then for quantum number n � 1, the equation for bulk dispersions can be expressed as[(

B
(2)
11 k2

z + B
(0)
11 − ε

)(
B

(2)
22 k2

z + B
(0)
22 − ε

)
+ k2

zB
(1)
12 B

(1)
21

]
× [(

B
(2)
33 k2

z + B
(0)
33 − ε

)(
B

(2)
44 k2

z + B
(0)
44 − ε

)
+ k2

zB
1
34B

1
43

]
+ B

(0)
41 B

(0)
32 B

(0)
23 B

(0)
14 + B

(0)
41 B

(1)
12 B

(0)
23 B

(1)
34 k2

z + B
(0)
14 B

(1)
21 B

(0)
32 B

(1)
43 k2

z

− B
(0)
41 B

(0)
14

(
B

(2)
22 k2

z + B
(0)
22 − ε

)(
B

(2)
33 k2

z + B
(0)
33 − ε

)
− B

(0)
23 B

(0)
32

(
B

(2)
11 k2

z + B
(0)
11 − ε

)(
B

(2)
44 k2

z + B
(0)
44 − ε

) = 0, (30)
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where ε = 2m(E − Ev)/h̄
2. This fourth-order equation in k2

z yields four bulk states. In each
of these states the electron or the light-hole states of indices ν = n and n + 1 mix with the
heavy-hole states of indices ν = n − 1 and n + 2 with different spin orientations. This mixing
is due to the off-diagonal terms in matrices B(1) and B(0) which are proportional to

√
B and

B, respectively.
For quantum number n = 0, C3 = 0 because the corresponding function fν=n−1(x

′) is
zero. Then the equation for the dispersion relations is third order in k2

z :[(
B

(2)
33 k2

z + B
(0)
33 − ε

)(
B

(2)
44 k2

z + B
(0)
44 − ε

)
+ k2

zB
(1)
34 B

(1)
43

]
× (

B
(2)
11 k2

z + B
(0)
11 − ε

) − (
B

(2)
33 k2

z + B
(0)
33 − ε

)
B

(0)
14 B

(0)
41 = 0. (31)

So, the dispersions of three bulk states can be obtained. In each of the corresponding states,
the electron or the light-hole states of indices ν = n = 0 and ν = n + 1 = 1 with spins along
and opposite to the magnetic field mix with the heavy-hole states of index ν = n + 2 = 2 with
spin sz � −1/2.

For the case n = −1, both C2 = 0 and C3 = 0 because fν=n(x
′) = 0 and fν=n−1(x

′) = 0.
Hence, only two bulk states are mixed: the electron or light-hole states of index ν = n = 0
and the heavy-hole states of index ν = n + 1 = 1 with spins opposite to the magnetic field.
The dispersions of these two states are given by(

B
(2)
33 k2

z + B
(0)
33 − ε

)(
B

(2)
44 k2

z + B
(0)
44 − ε

)
+ k2

zB
(1)
34 B

(1)
43 = 0. (32)

The last term in the above equation, which produces the mixing, is proportional to the magnetic
field.

For quantum number n = −2 we have C2 = C3 = C5 = 0, and the eigenfunction contains
only one heavy-hole state of index ν = n + 2 = 0 with spin sz = −1/2. The corresponding
dispersion is

B
(2)
44 k2

z + B
(0)
44 − ε = 0. (33)

Since this state does not mix with any other state, interband tunnelling through it cannot occur.
Equations (30)–(33) are up to the fourth order in k2

z , and have solutions in the form
k2
z = φi(E, n) [34], which define the dispersions of bulk states for all quantum numbers n. The

corresponding envelope functions are given by (25), for which the vector C = (C2C3C5C6)
T

is derived from equation (26). Using equations (14) and (15) the residual coefficients C1 and
C4 can be expressed in terms of C2, C3, C5, C6 as

C1 = (E − Ec)
−1(

√
2iPkzC2/

√
3 + P

√
sC3/

√
2 + 2(n + 1)P

√
sC5/

√
6),

C4 = (E − Ec)
−1(P

√
sC2/

√
6 +

√
2iPkzC5/

√
3 + 2(n + 2)P

√
sC6/

√
2).

(34)

5. Interband magnetotunnelling

We construct the wavefunctions in each layer of a heterostructure from all transmitted and
reflected bulk states for a given energy and ky . Then, using the boundary conditions, the
solutions of equations (13) are obtained with the transfer matrix method. The detailed
procedure of using the transfer matrix method to calculate wavefunctions within the framework
of multiband envelope function approach is given in [35]. In accordance with the boundary
conditions at the interfaces, the mixing of the states occurs only for a given quantum number
n. Because of this, we can calculate the wavefunctions in a heterostructure separately for each
quantum number n. For n = −1 the transfer matrix is 4 × 4 due to the mixing of two bulk
states. For n = 0 and for n � 1, the transfer matrices are 6 × 6 and 8 × 8, respectively. The
mixing of different states at the interfaces implies the possible interband transport processes
in which the Landau-level index and the spin orientation can change, as described in [30].
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After deriving the wavefunctions, the coefficient of transmission from the incident state l

into the transmitted state r is given by [30]

Trl =
(∫

dx jzr

)/(∫
dx jzl

)
, (35)

where jzl , jzr are the normal components of the incident and the transmitted probability current
density, respectively. The expression for jz is

jz = Re(ψ†ĵzψ), (36)

with the probability current density operator

ĵz = v̂z = i

h̄
[Ĥ6z − zĤ6] = 1

h̄

(
v̂+

z 0
0 v̂−

z

)
, (37)

where v̂z is the velocity operator and

v̂±
z =




0
√

2iP/
√

3 0

−√
2iP/

√
3 −h̄2(2γ2 + γ1)k̂z/m h̄2

√
6iγ2K̂±/m

0 −h̄2
√

6iγ2K̂∓/m h̄2(2γ2 − γ1)k̂z/m


 . (38)

Then, under a bias voltage V , the current density components jrl for intra- and inter-Landau-
level interband tunnelling processes can be calculated as [30]

jrl = |e|s
(2π)2h̄

∫
dE Trl(E, V )(fl(E) − fr(E + |e|V )), (39)

where fl , fr are the Fermi–Dirac occupation probabilities for the states to the left and to the
right of the RTS. The total current density is the sum of all components jrl .

6. Results and discussion

For our numerical calculation, we have taken from [36, 37] all band structure parameters and
the heavy-hole effective masses in various layer materials. The light-hole effective masses are
0.026 m for InAs, 0.052 m for GaSb, and 0.12 m for AlSb [38]. Using the bulk dispersions
given in [21], the interband momentum matrix element and the modified Luttinger parameters
were derived. We use 0.023 m for the electron effective mass in InAs to calculate the interband
momentum matrix element.

We will first present the results for the InAs/AlSb/GaSb/AlSb/InAs broken-gap double-
barrier RTS. We set the GaSb well width at 65 Å, and the two AlSb barrier widths at 15 and
25 Å. The energy of an incident electron is measured from the InAs conduction band edge. The
InAs contacts have bulk properties. Under an external magnetic field the electron bulk states
are characterized by Landau-level indices, because simple one-band model is approximately
valid near the conduction band edge.

We have calculated the transmission coefficients under a magnetic field B = 17 T. The
results for a bias voltage V = 0.05 V are plotted in figure 2 versus the energy of an incident
electron. For quantum number n larger than 1, the interband resonant tunnelling is forbidden
by the selection rule. The curves 1 and 2 in panel (a) correspond to the quantum numbers
n = −1 and 0, respectively. Curve 3 in panel (b) is for n = 1, and curve 4 corresponds to
n = 0. The eigenenergies of both the incident electron in the InAs emitter and the transmitted
electron in the InAs collector are Landau levels. Inside the double-barrier RTS, due to the off-
diagonal terms in matrices B(1) and B(0), the bulk hole Landau states are mixed. On the other
hand, the tunnelling processes corresponding to curves 1, 2, and 3 in figure 2 occur with the
conservation of the Landau-level index. As a result, curve 1 describes the interband tunnelling
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Figure 2. Transmission coefficients versus incident particle energy at the bias voltage V = 0.05 V
and at B = 17 T for the double-barrier RTS.

between the states in the emitter with Landau-level index ν = 0 and spin s � −1/2 and the
states in the collector with the same Landau-level index and spin. Curves 2 and 3 correspond
to the transitions between the states with s � 1/2 and indices ν = 0 and 1, respectively. In
this RTS under an applied bias, the spin-flip processes from the states with Landau-level index
ν = 0 and s � 1/2 into the states with Landau-level index ν = 1 are also allowed. Curve 4
represents these spin-flip processes with the change of the Landau-level index from ν = 0 to
1. The probability of inter-Landau-level transitions, due to the mixing of the different states
at interfaces caused by the spin–orbit interaction [30], is significant.

To identify the transport processes which are associated with all these peaks in figure 2,
we have plotted the peak positions as functions of the applied magnetic field strength. The
results for bias voltage V = 0.05 V are shown in figure 3, with panel (a) for quantum number
n = −1, panel (b) for quantum number n = 0, and panel (c) for quantum number n = 1. At
the extremely weak magnetic field B � 0, at normal incidence, there is no mixing between the
electron and the heavy-hole states. Therefore, the only resonant tunnelling process is through
the light-hole quasibound state of the first space-quantized subband in the well. This state
is labelled as LH1. With a finite magnetic field strength, due to the mixing of the electron
and the light-hole states with the heavy-hole states, there exist resonant tunnelling processes
involving the heavy-hole states of the first and the second space-quantized subbands, which
are labelled, respectively as HH1 and HH2. Each LH1 peak for n > −1 and each HH1 or HH2
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Figure 3. Positions of the transmission coefficient peaks versus the magnetic field for the double-
barrier RTS at the bias voltage V = 0.05 V.

peak for n > 0 is split into two peaks due to the formation of Landau levels. Via the analysis of
figure 3, we conclude that the two peaks in curve 1 of figure 2 mark the transitions through the
mixed HH1 state and the LH1 state with spin opposite to the magnetic field direction, and with
Landau-level indices ν = 1 and 0. In figure 2, the three peaks in curve 2 and the two peaks in
curve 4 are due to the resonant tunnelling through the mixed HH1 state with the Landau-level
index ν = 2 and spin opposite to the magnetic field direction, as well as the resonant tunnelling
through the LH1 states with Landau-level indices ν = 0 and 1, and with spins directed along
and opposite to the magnetic field direction. The peak in curve 3 of figure 2 corresponds to
the transitions through the HH1 states.
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Figure 4. Total current density (curve 1) and current density components (curves 2 and 3) versus
the bias voltage for the double-barrier RTS. The magnetic field is B = 17 T.

Figure 4 shows the calculated current density through an InAs/AlSb/GaSb/AlSb/InAs RTS
under a magnetic field of 17 T at the temperature 1.5 K. The donor concentration in each InAs
contact is nD = 1017 cm−3. In this case the only interband transition is originated from the
states of the lowest Landau level with s � 1/2. Curve 1 is for the total current density, in which
the three broad maxima are caused by the three resonant tunnelling peaks in curve 2 of figure 2.
Such maxima of current density were observed experimentally [24]. The total current density
has two contributions. One is from the transport process which conserves the Landau-level
index (curve 2), and the other does not conserve the Landau-level index (curve 3). At large
bias voltage, both contributions are important.

Next we present our calculated results for the barrierless InAs/GaSb/InAs structure with
a 300 Å GaSb layer. The donor concentration in each InAs contact is nD = 1017 cm−3. The
parameters for this structure are taken from [25]. The I–V curve is shown in figure 5 for
an applied magnetic field B = 30 T at the temperature 4.2 K. While the spin-flip processes
with the changing Landau-level index are noticeable at lower magnetic fields, at such a high
magnetic field as B = 30 T the spin-flip processes have a very weak effect on the total current
which is plotted in figure 5. The current density oscillations with increasing applied bias are
caused by the interband resonant transitions through various mixed states. Such oscillating
behaviour was observed experimentally [25]. Furthermore, we obtained the result that the
main peak position shifts toward lower voltage with increasing magnetic field. This was also
observed in experiments [25].

From our calculation we found that the dominating interband transitions are from the
states in the emitting InAs contact with Landau-level index ν = 0 and spin s � 1/2 to the
similar states in the collecting InAs contact. The transmission coefficients for these dominating
transitions are shown in figure 6 for a bias of 0.05 V, with panel (a) for B = 0.01 T and panel (b)
for B = 30 T. For the weak magnetic field of 0.01 T, the interband transitions are through
the light-hole states. The number of peaks increases with the magnetic field, because of the
formation of the Landau levels as well as the appearance of the heavy-hole peaks. When
the field strength is very high, all quasibound states are strongly mixed, and it becomes very
difficult to identity the origin of the peaks.

We should mention that our theoretical analysis explains qualitatively the origin of the
multiple current peaks and the tunnelling mechanism, although our approach does not predict
the precise number of current peaks, the accurate bias voltage values at which these peaks
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Figure 5. The I–V characteristic of the InAs/GaSb/InAs barrierless structure with a 300 Å GaSb
quantum well under the magnetic field B = 30 T.

Figure 6. Transmission coefficients versus incident particle energy in the InAs/GaSb/InAs
barrierless structure at the bias voltage V = 0.05 V. Panel (a) is for the magnetic field B = 0.01 T,
and panel (b) is for the magnetic field B = 30 T.

appear, or the peak-to-valley current ratios. The experimentally observed valley current
densities and the bias voltages for current peaks are larger than those shown in figure 5. Also,
only three current peaks are detected [25]. The reason for the discrepancy between theory and
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experiment is the neglect in our calculation of the scattering-assisted processes, band bending,
and charge accumulation. It is clear that the scattering-assisted processes enhance the valley
current but suppress the resonant tunnelling, and the other two effects modify the shape of the
I–V curve. The band bending causes a shift in the current peak toward the higher bias voltage.
The downward band bending in the emitting contact and the upward band bending in the
quantum well also produce charge accumulation in both the emitting contact and the quantum
well, which influence the band bending self-consistently. As a result, there is a decrease of the
overlap between the valence band of the GaSb quantum well and the conduction band of the
InAs emitting contact. This reduces the number of quasibound states in the well, and hence the
number of resonant tunnelling peaks as observed experimentally. A self-consistent calculation
is required to clarify all relevant details.

7. Conclusions

In summary, we have studied the influence of the coupling between the electron, the light-hole,
and the heavy-hole states on the interband resonant tunnelling in broken-gap heterostructures
under a quantizing magnetic field perpendicular to the interfaces. We found additional peaks in
the transmission coefficients for the intra-Landau-level and inter-Landau-level tunnelling, as
well as in the corresponding current density components. These additional peaks are caused by
the resonant transitions through the mixed light-hole and heavy-hole quasibound states in the
well with different Landau-level indices. The number of peaks is increased when the heavy-
hole states are taken into account. As a result, several peaks appear in the I–V characteristics
of both the double-barrier RTS and the barrierless structure. The transport processes, for which
the Landau-level index changes, make a significant contribution to some of these peaks.
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Appendix A

The basis functions used in the present work are

u1 = |s1/2,1/2〉 = |iS↑〉, (A.1)

u2 = |p3/2,1/2〉 = (2/3)1/2|p0↑〉 + (1/3)1/2|p+↓〉, (A.2)

u3 = |p3/2,3/2〉 = |p+↑〉, (A.3)

u4 = |s1/2,−1/2〉 = |iS↓〉, (A.4)

u5 = |p3/2,−1/2〉 = (2/3)1/2|p0↓〉 + (1/3)1/2|p−↑〉, (A.5)

u6 = |p3/2,−3/2〉 = |p−↓〉, (A.6)

where |p0〉 = i|Z〉, |p±〉 = ∓i|X ± iY 〉/√2, |s1/2,±1/2〉 are the electron states, |p3/2,±3/2〉 are
the heavy-hole states, and |p3/2,±1/2〉 are the light-hole states.
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